imc indymedia

Los Angeles Indymedia : Activist News

white themeblack themered themetheme help
About Us Contact Us Calendar Publish RSS
latest news
best of news




A-Infos Radio

Indymedia On Air

Dope-X-Resistance-LA List


IMC Network:

Original Cities africa: ambazonia canarias estrecho / madiaq kenya nigeria south africa canada: hamilton london, ontario maritimes montreal ontario ottawa quebec thunder bay vancouver victoria windsor winnipeg east asia: burma jakarta japan korea manila qc europe: abruzzo alacant andorra antwerpen armenia athens austria barcelona belarus belgium belgrade bristol brussels bulgaria calabria croatia cyprus emilia-romagna estrecho / madiaq euskal herria galiza germany grenoble hungary ireland istanbul italy la plana liege liguria lille linksunten lombardia london madrid malta marseille nantes napoli netherlands nice northern england norway oost-vlaanderen paris/Île-de-france patras piemonte poland portugal roma romania russia saint-petersburg scotland sverige switzerland thessaloniki torun toscana toulouse ukraine united kingdom valencia latin america: argentina bolivia chiapas chile chile sur cmi brasil colombia ecuador mexico peru puerto rico qollasuyu rosario santiago tijuana uruguay valparaiso venezuela venezuela oceania: adelaide aotearoa brisbane burma darwin jakarta manila melbourne perth qc sydney south asia: india mumbai united states: arizona arkansas asheville atlanta austin baltimore big muddy binghamton boston buffalo charlottesville chicago cleveland colorado columbus dc hawaii houston hudson mohawk kansas city la madison maine miami michigan milwaukee minneapolis/st. paul new hampshire new jersey new mexico new orleans north carolina north texas nyc oklahoma philadelphia pittsburgh portland richmond rochester rogue valley saint louis san diego san francisco san francisco bay area santa barbara santa cruz, ca sarasota seattle tampa bay tennessee urbana-champaign vermont western mass worcester west asia: armenia beirut israel palestine process: fbi/legal updates mailing lists process & imc docs tech volunteer projects: print radio satellite tv video regions: oceania united states topics: biotech

Surviving Cities africa: canada: quebec east asia: japan europe: athens barcelona belgium bristol brussels cyprus germany grenoble ireland istanbul lille linksunten nantes netherlands norway portugal united kingdom latin america: argentina cmi brasil rosario oceania: aotearoa united states: austin big muddy binghamton boston chicago columbus la michigan nyc portland rochester saint louis san diego san francisco bay area santa cruz, ca tennessee urbana-champaign worcester west asia: palestine process: fbi/legal updates process & imc docs projects: radio satellite tv
printable version - js reader version - view hidden posts - tags and related articles

apologies from the NWO

by just dew it Wednesday, Jun. 29, 2005 at 6:36 AM


apologies from the N...
1aaagulfwar1.jpgxafzol.jpg, image/jpeg, 300x300

...Directed-energy weapons could be based on a variety of platforms, and they come in a wide range of power levels. For local asset defense, comparatively small systems can quickly kill very short-range targets by focusing the laser's tremendous power precisely on a target's most vulnerable point. Larger systems could generate even high power levels, roughly equivalent to two sticks of dynamite, focused in a beam about the diameter of a basketball. Such a weapon can kill a target moving at one thousand miles per hour at a distance of up to several hundred miles, within a few seconds of acquiring the target.12


The Heritage Foundation > Research > National Security > The Use of Directed-Energy Weapons to Protect Critical Infrastructure  

The Use of Directed-Energy Weapons to Protect Critical Infrastructure

by Jack Spencer and James Jay Carafano, Ph.D.

Backgrounder #1783

August 2, 2004 |


America's critical infrastructure--e.g., power plants, transportation hubs, and telecommunications facilities--is becoming increasingly vulnerable to precision missile attacks. Guided missile technology and the missiles themselves have been available for years, but the emergence of global terror networks, sophisticated smuggling techniques, and the post-September 11 security environment have made the threat of precision missile attacks even more serious. While technology transfer legislation and international agree-ments may help to control the spread of some technologies, relying solely on these mechanisms is wholly insufficient, especially when proliferation has already occurred. Therefore, it is essential that the United States actively defend its most vital nodes of critical infrastructure. 1 To be effective against close-range missile attacks, such defenses must be cost efficient, safe, and swift.

Although the United States is not currently prepared to protect domestic targets against these threats, it does have the technology to do so with directed-energy weapons (DEWs), which include lasers, microwaves, electromagnetic pulses, and high intensity radio frequency waves. In 2000, for example, the Army used the Tactical High Energy Laser to shoot down a rocket carrying a live warhead--the first time a laser has destroyed a missile in flight.

To ensure that these promising technologies are effectively fielded in a timely manner:

• Congress should fully fund directed-energy programs;

• The Department of Defense (DOD) and the Department of Homeland Security (DHS) should cooperate fully on their respective directed-energy efforts;1

• DHS should conduct a national needs assessment of critical infrastructure; and

• The United States should facilitate the sharing of directed-energy technology with its allies.

The Threat of Precision Strike Weapons

Although rarely considered in homeland security assessments, precision attacks using missiles--traditionally thought of as conventional weapons--pose a threat to principal U.S. infrastructure. Precision missiles can engage targets at extended ranges, from one hundred yards to thousands of miles. Whereas the military already employs certain measures to thwart such stealthy attacks abroad and defend key military installations, other more diverse and soft nodes of U.S. critical infrastructure are less well-defended and often not defended at all. With an ever-increasing potential for terrorists to procure missile technologies and weapons, precision missile strikes could represent an enduring threat from both terrorists and rogue states. There are numerous precision systems around the world that could threaten America's critical infrastructure.

• Short-range threat. Man-portable air defense systems (MANPADS) were originally developed to defend against military aircraft. However, terrorists have used them to target passenger aircraft. They have precision strike capabilities, are globally available, and come in a variety of configurations and capabilities.2 Not only could MANPADS be used to down an airliner, but they could also be used to target vulnerable points at ground facilities such as power plants. At about 35 pounds and 6 feet long, MANPADS are relatively easy to conceal and transport.3 Anti-tank guided missiles (ATGMs) have similar capabilities. An ATGM weapon, guidance system, and ammunition could fit in a car trunk, and ATGMs are readily available on the arms black markets. These systems could be used to target any number of critical infrastructure nodes, such as major financial facilities, water treatment plants, and even primary government buildings.

• Longer-range threat. The cruise missile threat is also growing. While relatively few nations have land-attack cruise missiles, many have anti-ship cruise missiles. Although these systems were developed to target ships at sea, they could also be modified and turned against civilian infrastructure along America's shorelines, or they could be used simply as weapons of terror by launching them indiscriminately at populated areas. The short-range ballistic missile threat is also growing. Although few nations possess intercontinental-range capabilities, many nations do have short-range ballistic missiles. These missiles could be transported globally on cargo ships and launched at the U.S. homeland.

Why Directed-Energy Weapons

Directed-energy weapons have singular characteristics that make them uniquely appropriate to addressing the short-range missile threat, and they would prove immensely valuable employed as part of critical infrastructure defense. They could protect high-risk structures, such as major government buildings, major transportation nodes, vital commercial assets, power plants, and airports. Although other options may exist that could protect critical infrastructure (e.g., surface-to-air missile batteries, fighter aircraft surveillance, and arms control legislation), in the long run none are as cost effective, precise, safe, or swift as a directed-energy defense system.

What Are Directed-Energy Weapons? Direct-ed-energy weapons include a host of technologies, including lasers and microwave radiation emitters. These weapons can inflict casualties and damage equipment by depositing energy on their intended target. Compared with conventional weapons, which rely on the kinetic or chemical energy of a projectile, DEWs hit a target with subatomic particles or electromagnetic waves that travel at speeds at or near the speed of light. DEWs generate very high power beams and typically use a single optical system to both track a target and to focus the beam on the target in order to destroy it.4

Lasers--the most mature form of directed-energy weapon that can counter airborne threats--form intense beams of light that can be precisely aimed across many kilometers to disable a wide range of targets: from satellites to missiles and aircraft to ground vehicles.5 Additionally, the laser beam can be redirected by mirrors to hit targets not visible from the source--all without compromising much of the beam's initial power.

In 1996, the U.S. Army and the Israeli Ministry of Defense began to develop a short-range tactical high energy laser (THEL), which has since become the most successful laser-based anti-missile program in history. It is the most advanced directed-energy technology that the American armed forces have available to protect critical infrastructure. Demonstrating the unique threat flexibility of laser weapons, THEL has intercepted dozens of threats and a growing list of different threat types, including a large number of Russian Katyusha rockets, five artillery shells, and, more recently, large caliber rockets. The Army is preparing to build a mobile prototype (Mobile THEL or MTHEL), which will add mobility and high operational readiness. MTHEL could protect against the kind of rocket and mortar threats that U.S. troops have been facing in Iraq and Afghanistan. HORNET (a slightly different, upgraded MTHEL configuration) could also protect an airport against a full range of MANPADs and other precision strike threats.

Protecting Critical Infrastructure. Future directed-energy weapons may offer the greatest improvements to U.S. defenses. For example, within a decade, American military developments in MTHEL could produce prototype weapons capable of providing area-wide point defenses against artillery, rockets, mortars, missiles, and low-flying unmanned aerial vehicles. Ground-based lasers are being designed not only for battlefield uses, but also to protect Israeli population centers from terrorist attacks with Katyusha rockets and other improvised rocket, artillery, and mortar systems.6

Such systems could be employed in the U.S. as well. These weapons could be deployed at airports to defend planes from attacks by shoulder-fired missiles (and by makeshift rockets and missiles) during takeoff and landing--the times when aircraft are most vulnerable. With most airports located in or near major urban centers, DEWs could help to address the near impossibility of providing adequate, credible security zones around airports. Furthermore, DEWs could defend coastal airports from attacks launched from a commercial or private ship loitering offshore--a potentially ideal platform for launching precision strikes.

Unique Advantages of Directed-Energy Weapons. During the past two decades, directed-energy projects have advanced considerably in areas such as power, beam-control, and pointing and tracking techniques. This progress accounts for the U.S. government's growing interest in directed-energy technology. The unique features and advantages of DEWs may arguably revolutionize concepts of military operations, as well as greatly influence civilian protection.

• Operating at the speed of light. DEWs' first significant advantage is that their destructive mechanisms (electromagnetic beams) travel at the speed of light. Naturally, this almost instantaneous impact across great distances simplifies the tracking and intercepting phases of missile defense and greatly diminishes the target's ability to evade interception. DEWs effectively eliminate many problems associated with fly-out time for existing weapons because virtually no time elapses between firing a DEW and its impact on target.

• Gravitational immunity. Laser beams are unaffected by gravity or atmospheric drag. Simply, energy beams are essentially immune to gravity due to their lack of mass, which also frees them from the kinematic and aerodynamic constraints that limit more traditional weapons. Hence, the complex calculations required to determine ballistic trajectories and other flight characteristics of conventional munitions are irrelevant to directed-energy devices.7

• Precise and adjustable targeting. DEWs offer extremely precise targeting, which allows for surgical strikes with no collateral damage or fratricidal effects on friendly forces. This would be particularly advantageous when operating near volatile workstations, such as nuclear and chemical plants. A related feature of DEW technology is the ability to customize the weapon by adjusting the amount of energy deposited upon targets. This allows for a wide range of results: lethal or non-lethal, destructive or disruptive.8 As Air Force Chief of Staff General Ronald Fogelman articulated, "DEWs are the opposite of weapons of mass destruction--they are the most promising precision non-lethal weapons we have."9

• Affordable. Once fully deployed, DEWs will likely be able to intercept targets at a relatively low cost when compared to conventional munitions. Although the beam-generating system may be initially expensive to build and maintain, the price of engagements is minimal because the system expends only energy. In the case of missile defense, the threats are typically extremely cheap. On the other hand, interceptor missiles can cost millions of dollars, creating a tremendous cost imbalance that favors the attacker. With laser weapons, some missiles can be replaced with a DEW costing only a few thousand dollars per shot to achieve equivalent or superior probability of kill. For example, a THEL shot is estimated to cost about ,000.10 In comparison, firing a PATRIOT (PAC-3) missile costs .8 million; an AIM-7 Sparrow missile costs approximately 5,000; and a Tomahawk cruise missile costs roughly 0,000.11 Firing a DEW is an extremely economical way to combat MANPADS and artillery, the current threats to U.S. critical infrastructures.

• Repetitive engagements. DEWs have a capacity for repetitive engagements over protracted periods, constrained only by the availability of power and the need to vent the byproducts of beam generation (e.g., heat and chemicals). Conventional weapons, especially those firing precision-guided munitions, are typically constrained in the number of engagements by a limited supply of rounds. Even when the rounds are cheap expendables, space and weight limitations place a ceiling on how many engagements can occur without replenishment. DEWs are not entirely free of such considerations but they have the potential for much deeper magazines arising from the low-cost and high-energy potential of their power sources. Finally, a DEW provides the versatility of serving as a sensing device as well as a weapon. Lasers can be used not only to attack targets, but also to detect, image, track, and illuminate ("acquire") them. High-power microwaves operate in the same wavelengths as radars, giving them similar tracking potential in some applications.

• Diverse. Directed-energy weapons could be based on a variety of platforms, and they come in a wide range of power levels. For local asset defense, comparatively small systems can quickly kill very short-range targets by focusing the laser's tremendous power precisely on a target's most vulnerable point. Larger systems could generate even high power levels, roughly equivalent to two sticks of dynamite, focused in a beam about the diameter of a basketball. Such a weapon can kill a target moving at one thousand miles per hour at a distance of up to several hundred miles, within a few seconds of acquiring the target.12

What Should Be Done

To take full advantage of directed-energy weapons for use in securing critical U.S. infrastructure, the Bush Administration and Congress should take the following actions:

• Fully fund directed-energy research and development programs. While DEW research and development programs have been extremely successful during the past two decades, additional funding could provide an even greater revolution of both offensive and defensive weapons. Despite the numerous unique advantages of DEWs, the system has a few challenges or drawbacks. For example, as with all lasers operating in the lower atmosphere, dust, fog, smoke, and other battlefield obscurants can attenuate laser beam energy.13 Another challenge is combining all the components of a laser weapon into a functioning and reliable system--an integration-level challenge.14 With greater funding, research and development programs could overcome these difficulties.

• Require cooperation between the Department of Defense and the Department of Homeland Security. To facilitate greater efficiency in DEW research and development, the Administration should establish a cooperative program between the DOD and the DHS to ensure that directed-energy information and technology are freely exchanged between the two departments. Protecting commercial aircraft, major government facilities, nuclear and chemical power plants, and transportation nodes against precision missiles is a concern for both DHS and the U.S. military. By cooperating, these departments can accomplish more at an increased speed. It is imperative that they jointly develop both the means and the technologies necessary to meet the threat of missile attacks on critical infrastructure.15 Without such cooperation, the departments will almost certainly duplicate research and produce less (at greater cost) than they would by working together.

• Conduct a national needs assessment of critical infrastructure. To ensure maximum efficacy, the DHS should conduct a national needs assessment of critical infrastructure, identifying and categorizing the potential security threats against specific structures. In the past, vulnerability assessments tended to focus on the threat of long-range weapons, such as intercontinental ballistic missiles, or close-in assaults, such as truck bombs. Regrettably, the variety of infrastructure targets has not been detailed, leaving significant uncertainty as to these structures' level of vulnerability. Researching this area of concern is imperative in order to deploy a DEW defense system effectively.

• Facilitate the sharing of directed-energy technology with U.S. allies. The Administration should establish a homeland security equivalent of the Foreign Military Sales program that would allow the sharing of directed-energy technology with friends and allies for critical infrastructure defense. The United States has already had some successful bilateral technology sharing of counter-terrorism tools with individual countries, such as Israel. However, while the mechanism for developing and transferring defense technologies on a military-to-military basis is fairly mature, the United States lacks a sophisticated approach to sharing technologies and lessons learned for civilian homeland security needs.

Countries with sophisticated technology, such as the United States and India, should enter into a serious dialogue to determine what a future homeland security technology development regime might look like. Among other things, such a dialogue would require: (1) a technology clearinghouse so that the partners know which technologies are available for transfer; (2) a method of setting standards so that technologies are understandable; (3) interoperable and transferable means for industry-to-industry dialogue; (4) predictable export-control requirements; and (5) acquisition mechanisms, such as joint development programs, licensing agreements, and something comparable to the Foreign Military Sales program.


Although directed-energy weapons have been on the horizon for many years, never has their potential been so essential to homeland security. The United States needs to put the resources behind this promising technology now so that it can better protect its critical infrastructure in the near future.

Jack Spencer is Senior Policy Analyst for Defense and National Security and James Jay Carafano, Ph.D., is Senior Research Fellow for National Security and Homeland Security in the Kathryn and Shelby Cullom Davis Institute for International Studies at The Heritage Foundation.


1. As defined by Congress, critical infrastructure means "systems and assets, whether physical or virtual, so vital to the United States that the incapacity or destruction of such systems and assets would have a debilitating impact on security, national economic security, national public health or safety, or any combination of those matters." USA PATRIOT Act of 2001, 42 U.S.C. § 5195c(e).

2. For further reference on the threat of MANPAD, see James Jay Carafano, Ph.D., and Jack Spencer, "Facts About the Shoulder-Fired Missile Threat," Heritage Foundation Web Memo No. 328, August 14, 2003, at HomelandDefense/wm328.cfm.

3. Northrop Grumman, "HORNET Commercial and Military Aircraft Defense System," August 14, 2003.

4. Loren B. Thompson, Ph.D., "The Emerging Promise (and Danger) of Directed-Energy Weapons," Lexington Institute Capitol Hill Forum on Directed Energy, July 11, 2002, at (July 23, 2004).

5. Ibid.

6. Josef Schwartz, et al., "Tactical High Energy Laser," presented at the SPIE Proceedings on Laser and Beam Control Technologies, January 21, 2002, pp. 1-6. TRW developed a fixed-site THEL under an million contact. In tests, the system has successfully shot down 25 rockets. It is, however, not currently capable of being deployed for operational use. The U.S. Army is developing a mobile version and has requested additional funding for the program. In February 2004, the Army's tactical laser project was formally transitioned into an acquisition program. The first prototype of the mobile laser is due to appear in 2008. See Loren B. Thompson, Ph.D., and Daniel Gouré Ph.D., "Directed Energy Weapons: Technologies, Applications, and Implications," Lexington Institute White Paper, February 2003, pp. 11-12 and 24-25, at www.lexingtoninstitute. org/defense/DirectEngery.pdf (July 23, 2004).

7. Thompson and Gouré, "Directed-Energy Weapons."

8. Ibid.

9. Ibid., p. 5.

10. Sandra Erwin. "Directed Energy Weapons Promise Low Cost per Kill," National Defense Magazine, September 2001, at (July 23, 2004).

11. U.S. Navy, "Fact File," updated June 14, 2004, at (July 23, 2004).

12. Thompson and Gouré, "Directed-Energy Weapons," pp. 19-37.

13. Ibid., pp. 3-18.

14. Ibid.

15. James Jay Carafano, Ph.D., "Strategy and Security in the Information Age: Grading Progress in America's War on Terrorism," Heritage Foundation Lecture No. 824, March 17, 2004, at

© 1995 - 2005 The Heritage Foundation

All Rights Reserved.

Read our privacy guidelines. | Contact us. | Return Home.  

Issue in Brief: National Security

Building a Global Training Base: Military Transformation's Missing Priority


The Future of the Air Force: A View from the Top


The 2005 Quadrennial Defense Review: The Military Industrial Base


About Jack Spencer and James Jay Carafano, Ph.D.

By Jack Spencer and James Jay Carafano, Ph.D.:

The Future of the Air Force: A View from the Top


The 2005 Quadrennial Defense Review: The Military Industrial Base


No Good Reason To Close Gitmo


Atomic Iran: How the Terrorist Regime Bought the Bomb and American Politicians


The Future of the Navy: A View from the Top


The 2005 Quadrennial Defense Review: Strategy and Threats


India and Pakistan: Analysis of Ballistic Missile Forces (pdf)


Report this post as:

rapid primary canopy deployment

by just dew it Wednesday, Jun. 29, 2005 at 6:36 AM

rapid primary canopy...
01180421215pm15.jpg, image/jpeg, 288x352

from clear blue sky to perfect energized canopy in two hours, 50 square miles ++...other canopys go on top of that, this is a multi level bubble shield against high altitude nuclear blasts...if you feel funny or itch real bad get under metal when all this is going on...

Report this post as:

satellite focii

by just dew it Wednesday, Jun. 29, 2005 at 6:36 AM

satellite focii...
070903105537am13.jpglt8w02.jpg, image/jpeg, 288x352

lots of stuff in space now, stuff you know nothing about, but it sure does know a lot about you

Report this post as:

Listed below are the 10 latest comments of 1 posted about this article.
These comments are anonymously submitted by the website visitors.
hi billder - spamming daily now ? Hex Wednesday, Jun. 29, 2005 at 8:44 AM

Local News


lausd whistle blower A10 11:58PM

Website Upgrade A10 3:02AM

Help KCET and UCLA identify 60s-70s Chicano images A04 1:02PM

UCLA Luskin: Casting Youth Justice in a Different Light A02 11:58AM

Change Links April 2018 A01 11:27AM

Nuclear Shutdown News March 2018 M31 6:57PM

Join The Protest Rally in Glendale on April 10, 2018! M29 7:00PM

Join The Protest Rally in Glendale on April 10, 2018! M29 6:38PM

Spring 2018 National Immigrant Solidarity Network News Alert! M19 2:02PM

Anti-Eviction Mapping Project Shows Shocking Eviction Trends in L.A. M16 5:40PM

Steve Mnuchin video at UCLA released M15 12:34AM

Actress and Philanthropist Tanna Frederick Hosts Project Save Our Surf Beach Clean Ups M06 12:10PM

After Being Told He's 'Full of Sh*t' at School Event, Mnuchin Demands UCLA Suppress Video M02 11:44AM

Resolution of the Rent Strike in Boyle Heights M01 6:28PM

What Big Brother Knows About You and What You Can Do About It M01 3:30PM

Step Up As LAPD Chief Charlie Beck Steps Down F14 2:44PM

Our House Grief Support Center Hosts 9th Annual Run For Hope, April 29 F13 12:51PM

Don’t let this LA County Probation Department overhaul proposal sit on the shelf F13 11:04AM

Echo Park Residents Sue LA Over Controversial Development F12 8:51AM

Former Signal Hill police officer pleads guilty in road-rage incident in Irvine F09 10:25PM

Calif. Police Accused of 'Collusion' With Neo-Nazis After Release of Court Documents F09 7:14PM

Center for the Study of Political Graphics exhibit on Police Abuse posters F07 9:50AM

City Agrees to Settle Lawsuit Claiming Pasadena Police Officer Had His Sister Falsely Arre F04 3:17PM

Professor's Study Highlights Health Risks of Urban Oil Drilling F04 12:42PM

Claims paid involving Pasadena Police Department 2014 to present F04 10:52AM

Pasadenans - get your license plate reader records from police F03 11:11PM

LA Times Homicide Report F03 1:57PM

More Local News...

Other/Breaking News

What does the Quran Say About Islamic Dress?? A21 4:15PM

Biodiversité ou la nature privatisée A20 11:22AM

The Market is a Universal Totalitarian Religion A20 7:14AM

Book Available about Hispanics and US Civil War by National Park Service A19 5:52PM

The Shortwave Report 04/20/18 Listen Globally! A19 4:01PM

The Republican 'Prolife' Party Is the Party of War, Execution, and Bear Cub Murder A19 11:48AM

Neurogenèse involutive A18 9:21AM

Paraphysique de la dictature étatique A16 10:13AM

Book Review: "The New Bonapartists" A16 3:45AM

The West Must Take the First Steps to Russia A14 12:25PM

Théorie générale de la révolution ou hommage à feu Mikhaïl Bakounine A14 3:30AM

The Shortwave Report 04/13/18 Listen Globally! A12 3:50PM

“Lost in a Dream” Singing Competition Winner to Be Chosen on April 15 for ,000 Prize! A12 3:48PM

The World Dependent on Central Banks A12 4:43AM

Ohio Governor Race: Dennis Kucinich & Richard Cordray Run Against Mike DeWine A11 9:40PM

March 2018 Honduras Coup Again Update A10 10:52PM

Apologie du zadisme insurrectionnel A10 3:33PM

ICE contract with license plate reader company A10 1:14PM

Palimpseste sisyphéen A09 11:23PM

Black Portraiture(S) IV: The Color of Silence...Cuba No...Cambridge Yes A09 5:32AM

Prohibiting Micro-Second Betting on the Exchanges A09 4:18AM

Prosecutors treat Muslims harsher than non-Muslims for the same crimes A08 10:33PM

Amy Goodman interview on cell phone safety A08 10:29PM

Mesa, Arizona police officer kills unarmed white man A08 9:50PM

Israeli leaders should be prosecuted for war crimes A08 9:48PM

Paraphysique de l'autorité A08 12:11AM

Two Podcasts on fbi corruption A06 10:13PM

Fbi assassins assault & try to kill DAVID ATKINS A06 7:29PM

More Breaking News...
© 2000-2018 Los Angeles Independent Media Center. Unless otherwise stated by the author, all content is free for non-commercial reuse, reprint, and rebroadcast, on the net and elsewhere. Opinions are those of the contributors and are not necessarily endorsed by the Los Angeles Independent Media Center. Running sf-active v0.9.4 Disclaimer | Privacy