imc indymedia

Los Angeles Indymedia : Activist News

white themeblack themered themetheme help
About Us Contact Us Calendar Publish RSS
latest news
best of news




A-Infos Radio

Indymedia On Air

Dope-X-Resistance-LA List


IMC Network:

Original Cities africa: ambazonia canarias estrecho / madiaq kenya nigeria south africa canada: hamilton london, ontario maritimes montreal ontario ottawa quebec thunder bay vancouver victoria windsor winnipeg east asia: burma jakarta japan korea manila qc europe: abruzzo alacant andorra antwerpen armenia athens austria barcelona belarus belgium belgrade bristol brussels bulgaria calabria croatia cyprus emilia-romagna estrecho / madiaq euskal herria galiza germany grenoble hungary ireland istanbul italy la plana liege liguria lille linksunten lombardia london madrid malta marseille nantes napoli netherlands nice northern england norway oost-vlaanderen paris/Île-de-france patras piemonte poland portugal roma romania russia saint-petersburg scotland sverige switzerland thessaloniki torun toscana toulouse ukraine united kingdom valencia latin america: argentina bolivia chiapas chile chile sur cmi brasil colombia ecuador mexico peru puerto rico qollasuyu rosario santiago tijuana uruguay valparaiso venezuela venezuela oceania: adelaide aotearoa brisbane burma darwin jakarta manila melbourne perth qc sydney south asia: india mumbai united states: arizona arkansas asheville atlanta austin baltimore big muddy binghamton boston buffalo charlottesville chicago cleveland colorado columbus dc hawaii houston hudson mohawk kansas city la madison maine miami michigan milwaukee minneapolis/st. paul new hampshire new jersey new mexico new orleans north carolina north texas nyc oklahoma philadelphia pittsburgh portland richmond rochester rogue valley saint louis san diego san francisco san francisco bay area santa barbara santa cruz, ca sarasota seattle tampa bay tennessee urbana-champaign vermont western mass worcester west asia: armenia beirut israel palestine process: fbi/legal updates mailing lists process & imc docs tech volunteer projects: print radio satellite tv video regions: oceania united states topics: biotech

Surviving Cities africa: canada: quebec east asia: japan europe: athens barcelona belgium bristol brussels cyprus germany grenoble ireland istanbul lille linksunten nantes netherlands norway portugal united kingdom latin america: argentina cmi brasil rosario oceania: aotearoa united states: austin big muddy binghamton boston chicago columbus la michigan nyc portland rochester saint louis san diego san francisco bay area santa cruz, ca tennessee urbana-champaign worcester west asia: palestine process: fbi/legal updates process & imc docs projects: radio satellite tv
printable version - js reader version - view hidden posts - tags and related articles

The Danger of Space Junk

by brian Tuesday, Jan. 27, 2004 at 5:06 PM

by steve olson few are considering the environmental hazards that space travel has begun to create in the biggest ocean of all

ON the wall of Darren McKnight's office, in Reston, Virginia, is a display that would give pause to anyone who might be considering a trip into space: two gnarled pieces of metal shot through with shredded electrical wires and mangled rivets. They are fragments of a Navy satellite that was shattered during a test in a Tennessee bunker by a plum-sized aluminum ball traveling at a speed of about four miles per second. On McKnight's desk is a photograph showing the thousands of other pieces of debris generated by the test, which McKnight, a vice-president of a company called Titan Research and Technology, and other researchers carried out to simulate the collision of a satellite with a piece of orbiting space junk. From the photograph alone it's impossible to tell what the metal fragments might once have formed.

Discuss this article in the Science & Technology forum of Post & Riposte.

Related links:

Intragency Report on Orbital Debris

The cabinet-level National Science and Technology Council's official report (including its policy-making recommendations) to the President on the issue of orbital debris.

Micrometeoroids and Orbital Debris

The Web site of the NASA Debris Research Program.

Introduction to Space Debris

The European Space agency describes its investigation into the risks posed by space debris.

From the archives:

"When is a Planet Not a Planet?", by David H. Freedman (February, 1998)

Arguments for and against demoting Pluto.

Flashback: "Our Place in Space," (June, 1997)

A look back at some Atlantic articles on space research.

"Warm-Blooded Plants and Freeze-Dried Fish," by Freeman J. Dyson (November, 1997)

A consideration of the possible future of space exploration.

Everything that human beings launch high enough into space will ultimately end up like that shattered satellite. As long as an object is above the last traces of Earth's atmosphere, it will stay in orbit for thousands or even millions of years. Eventually, whether a month or a millennium after launch, it will hit one of the millions of other objects orbiting Earth. That collision will generate new fragments, like the ones in McKnight's picture, which will go whirling around the planet until they, too, are involved in collisions. Over time everything in Earth's orbit will be ground into celestial scrap.

The space shuttle Endeavor is scheduled to ferry the first U.S.-built component of the International Space Station into orbit several months from now. A steady stream of modules and structural elements will follow over the next five years. If the station remains in space, it will eventually collide with a piece of debris. Maybe by then the station will be empty, its human occupants having moved on to other pursuits. But maybe not. If not, here's what the astronauts can expect. If a piece of debris the size of McKnight's aluminum ball hits a pressurized module, it will rip a five-inch hole in the wall. Because of the tremendous speed at which objects in orbit move -- typically about six miles per second -- the collision will liquefy both the piece of debris and the wall of the module. Molten metal will splatter the inside of the module, accompanied by a flash of heat and blinding light. Air will begin streaming out the hole, leaving any surviving astronauts just a few minutes to escape. If the piece of debris is larger, the module may undergo what engineers call "unzipping": its exterior will peel away from the frame like that of a banana, spewing the contents of the module into space.

Today the risk of such a disaster for a satellite or a small craft like the shuttle is relatively low, though Mir, the Russian space station, launched in 1986, has been hit by objects large enough to dent the inner wall of the crew compartment. But the International Space Station, much larger than Mir, will be a plump target for debris. Each decade that it is in orbit, according to a recent study, the station will have about a 20 percent chance of undergoing a "critical penetration" that could kill a crew member or destroy the station -- and the chances will increase as more objects are launched into space. In contrast, the chances of being in a commercial-airliner accident in the United States are about one in three million.

Venturing into space is inherently risky, and orbital debris is just one of many hazards that a space traveler faces. But the debris hazard is unique in being a product of our environmental negligence. After just forty years in space we have seriously polluted the final frontier. Valuable orbits are peppered with debris that threatens the operation of satellites and the lives of astronauts. A small group of orbital-debris experts have been concerned about this problem for years, and have slowly gained the attention of the government agencies and commercial enterprises that are now leading the way into space. Yet every four days, on average, another rocket that will make the problem worse is launched into space. According to Molly Macauley, a debris expert and a senior fellow at the nonprofit environmental organization Resources for the Future, "It's going to take a major catastrophic debris event, probably involving loss of life, before this issue gets widespread attention."

SPACE may seem remote, but it's really not that far away. If you could drive your car straight up, in just a few hours you'd reach the altitude at which the space shuttle flies. The popular orbits for satellites begin twice as far up -- about 400 miles above our heads. The only satellites that are truly distant from Earth are the several hundred in geosynchronous orbit, a tenth of the way to the moon. There telecommunications and weather satellites orbit at the same rate that Earth rotates, allowing them to hover above a single spot on the Equator.

Since 1957 the United States and what is now the former Soviet Union have conducted about 4,000 space launches (the launches conducted by all other countries and international organizations combined account for just a few hundred additional forays into space). The leftovers from these launches -- used-up satellites, the rockets that carried the satellites aloft, equipment from aborted scientific experiments -- form a sort of orbital time capsule, a mausoleum of space technology. In 1963 the Air Force released 400 million tiny antennas about the size of needles into orbit in order to see if radio waves would bounce off them. Though communications satellites soon made the antennas obsolete, they still float in lethal clumps 1,500 miles overhead. In 1965 the astronaut Michael Collins lost his grip on a camera while on a space walk. Many spacecraft shed debris -- bolts, lens caps, equipment covers, thermal blankets -- the way children shed toys. A series of Soviet nuclear-powered spy satellites are leaking coolant into space that is congealing into balls about an inch in diameter. Even the paint on spacecraft has a tendency to erode in the harsh environment of space, creating a cosmic grit that now pelts everything in orbit.

Many of the objects released into space in the lowest orbits, like Collins's camera, have fallen back to Earth. The upper atmosphere, where the space shuttle flies, gradually slows objects down; they re-enter the atmosphere and burn up within a few months or years. But a few hundred miles higher the atmosphere is so thin that it is ineffective for cleanup. Spacecraft that are launched into orbits at this height will stay in space indefinitely. "We and the Russians have been putting stuff up there for more than thirty years, and it's just where we left it," says Nicholas Johnson, the head of the orbital-debris program at the National Aeronautics and Space Administration.

Today radars that were designed to scan the horizon for incoming Russian missiles track a silent armada of space junk instead. The U.S. Space Surveillance Network routinely follows more than 8,000 objects that are larger than four inches across, which is approximately the lower limit of detectability for current technologies. When the network determines that the shuttle will pass within about a mile of a piece of debris, the astronauts may decide to fire the shuttle's rockets to give the junk a wider berth. But Earth's orbit also contains perhaps 100,000 objects that measure from half an inch to four inches across -- objects too small to see on radar but large enough to cause a spacecraft to fail. They are the land mines of space, undetected until something crosses their path.

Especially troublesome are pieces of the more than a hundred rockets and satellites that have exploded in orbit. At the end of their useful lives spacecraft typically contain some fuel left over from launch or from orbital maneuvers. The fuel tanks deteriorate over time or are punctured by debris. The leftover fuels mix together and explode. In the worst case on record the explosion of a European Ariane rocket produced more than 500 pieces of debris big enough to disable a spacecraft.

It was the explosions of derelict rockets that first drew NASA's attention to debris. In the 1970s Delta rockets left in orbit after delivering their payloads began blowing up. An investigation by McDonnell-Douglas, their manufacturer, showed that the bulkheads separating the leftover fuels were probably cracking as a result of the rocket's passing in and out of sunlight. NASA began recommending that leftover fuels be burned at the end of a flight, or that they be vented into space. Since then most public and private launchers have taken similar measures -- such steps are relatively inexpensive means of limiting debris. Still, every few months on average an old rocket or satellite explodes, flinging a cloud of debris into space.

Eventually the number of explosions will diminish, but by then spacecraft will be breaking up for another reason. As more objects go into orbit, spacecraft will begin colliding with -- and being shattered by -- debris. Furthermore, collisions beget more collisions. This process is known as collisional cascading, or the Kessler effect, after Donald Kessler, recently retired from his post as the head of the debris program at NASA. In the 1970s Kessler showed mathematically that once a certain amount of mass, known as the critical mass, is put into a particular orbit, collisional cascading begins even if no more objects are launched into that orbit. Originally dismissed as a mathematical fantasy, Kessler's prediction is on the verge of coming true. In the most popular orbits, Kessler says, "if we're not at the critical mass, we're pretty close to it."

Debris researchers argue vigorously about whether collisional cascading has begun. Technically, a "cascade" begins only when a piece of debris formed in one collision causes a subsequent fragmentation -- an as yet undocumented occurrence. But no one disputes that space is becoming a more dangerous place. Two years ago an old piece of an exploded rocket hit the boom of a French communications satellite, sending the satellite tumbling (though ground controllers eventually stabilized it and got it working again). A Minuteman missile launched last January blew up just as it passed a piece of space debris, though the explosion could have happened for unrelated reasons. Whenever an old satellite or rocket breaks up for no apparent reason, suspicion focuses on debris.

Once collisional cascading begins, the number of objects in a particular orbit will gradually increase -- and the risk to satellites and manned spacecraft will rise accordingly. A team of researchers in Italy, collaborating with Alessandro Rossi, a research fellow at the National Research Council of Italy, has calculated that enough objects are already present in two popular orbits, about 600 miles and 1,000 miles overhead, for cascading to begin. By the time the cascades have run their course, in a hundred years or so, even small spacecraft will suffer damaging collisions after just a few years in orbit. "This is only a projection," Rossi says, but if we keep putting objects into orbit as we have been, "operations will not be possible anymore."

FOR many years NASA and the Department of Defense were skeptical about the dangers of space debris. The problem seemed abstract, residing more in computer models than in hard experience. And it challenged the can-do mentality of space enthusiasts. Earth's orbit seemed too large and empty to pollute.

To its credit, NASA has long maintained a debris-research program, staffed by top-notch scientists who have persisted in pointing out the long-term hazards of space junk even when the higher-ups at NASA haven't wanted to hear about it. Then came the Challenger accident, in 1986. NASA officials realized that their emphasis on human space flight could backfire. If people died in space, public support for the shuttle program could unravel.

Engineers took a new look at the shuttle and the International Space Station. Designed in the 1970s, when debris was not considered a factor, the shuttle was determined to be clearly vulnerable. After almost every mission windows on the shuttle are so badly pitted by microscopic debris that they need to be replaced. Soon NASA was flying the shuttle upside down and backward, so that its rockets, rather than the more sensitive crew compartments, would absorb the worst impacts. And engineers were adding shielding to the space station's most vulnerable areas. At this point the modules should be able to survive impacts with objects measuring up to half an inch across, and NASA is developing repair kits for plugging larger holes in the walls.

But adding shielding and repair kits won't solve the real problem. The real problem is that whenever something is put into an orbit, the risk of collision for all objects in that orbit goes up. Therefore, the only truly effective measure is a process known as deorbiting -- removing objects from orbit when they reach the end of their useful lives. With current technology deorbiting requires that a satellite or a rocket reserve enough fuel for one last trip after its operations are finished. With enough fuel a spacecraft can promptly immolate itself in the atmosphere or fly far away from the most crowded orbits. If less fuel is available, it can aim for an orbit where atmospheric drag will eventually pull it to Earth.

The logic behind deorbiting has been inescapable since the beginning of the Space Age, yet it has just begun to penetrate the consciousness of spacecraft designers and launchers. In 1995 NASA issued a guideline saying that satellites and the upper stages of rockets within 1,250 miles of Earth should remain in orbit for no longer than twenty-five years after the end of their functional lives. But the guideline applies only to new spacecraft and can be waived if other considerations prevail. As a result NASA and the Defense Department also continue to leave the upper stages of some of their launch vehicles in orbit, partly because existing designs do not lend themselves to deorbiting.

Furthermore, the character of the Space Age is changing. Of the eighty-nine launches that took place worldwide last year, almost half carried commercial communications satellites. The private sector now puts more payloads into orbit than do NASA and the U.S. and Russian militaries combined. A score of communications companies in the United States and other countries have announced plans that will put hundreds of satellites into orbit over the next decade. Many will fly in relatively low orbits within a few hundred miles above where the space station will orbit, so that they can relay signals coming from hand-held phones.

None of these companies is under any obligation to limit orbital debris. Companies that are launching large constellations of satellites are worried about collisions between the satellites, and they are well aware that a public-relations disaster would ensue if a piece of a shattered satellite smacked the station. As a result, some plan to deorbit satellites at the end of their useful lives. But other companies are leaving their satellites up or are counting on atmospheric drag to bring them down.

Government regulations covering orbital debris are still rudimentary. For now, the federal agencies that have authority over commercial launches are waiting to see if the private sector can deal with the problem on its own. But deorbiting rockets and satellites is expensive. A satellite could keep operating for several additional months if it didn't need to reserve fuel for deorbiting. Some industry representatives say they want regulations, but only if the regulations apply to everyone and cannot be evaded. "Industry has a vested interest in keeping near-Earth orbit amenable to their continued operations," Nicholas Johnson, of NASA, says. "But companies want to make sure that everyone plays by the same rules."

International regulation will be even more difficult. Already the Russians and the Europeans launch a significant number of U.S. commercial satellites. U.S. launch companies would howl if the government imposed unilateral restrictions on spacecraft launched from U.S. territory. Extending restrictions internationally would probably require the involvement of the United Nations, which would raise a host of additional issues about the equitable use of orbits. Though discussions are taking place at a technical level, no one expects international agreements on deorbiting to be achieved anytime soon.

HUMAN societies have done plenty of things that we or our descendants may someday regret. At the beginning of the Atomic Age we seriously polluted vast tracts of land that will take many billions of dollars to clean up. We have increased the amount of carbon dioxide in the atmosphere despite a scientific consensus that global temperatures are rising as a result. We have dammed great and beautiful rivers even though the resulting reservoirs are filling with silt that will in time drastically reduce the dams' usefulness.

One reason for our nonchalance is that new technologies have gotten us out of many past scrapes -- and maybe they will with orbital debris, too. Perhaps a future spaceship will race around Earth grabbing old spacecraft and flinging them back into the atmosphere, though it is hard to imagine a similar clean-up method for the small pieces of debris generated by collisional cascading. Maybe Star Wars technologies will produce a laser that can shoot orbital junk from the sky.

But no such technologies are available today. Two years ago a distinguished National Research Council committee concluded that "active removal of debris will not be an economical means of reducing the debris hazard in the foreseeable future." Even if some such technology were developed, it would probably be much more expensive than reserving a bit of fuel to bring a spacecraft down at the end of its functional life.

In 1987 the World Commission on Environment and Development defined sustainable development as meeting the needs of the present generation without compromising the ability of future generations to meet their needs. In space we are failing the sustainability test miserably. A hundred years from now, when our descendants want to put satellites into orbits teeming with debris, they will wonder what we could have been thinking. The simple answer is we weren't thinking at all.


Steve Olson is the author of Shaping the Future: Biological Research and Human Values (1989).

Report this post as:

Local News


lausd whistle blower A10 11:58PM

Website Upgrade A10 3:02AM

Help KCET and UCLA identify 60s-70s Chicano images A04 1:02PM

UCLA Luskin: Casting Youth Justice in a Different Light A02 11:58AM

Change Links April 2018 A01 11:27AM

Nuclear Shutdown News March 2018 M31 6:57PM

Join The Protest Rally in Glendale on April 10, 2018! M29 7:00PM

Join The Protest Rally in Glendale on April 10, 2018! M29 6:38PM

Spring 2018 National Immigrant Solidarity Network News Alert! M19 2:02PM

Anti-Eviction Mapping Project Shows Shocking Eviction Trends in L.A. M16 5:40PM

Steve Mnuchin video at UCLA released M15 12:34AM

Actress and Philanthropist Tanna Frederick Hosts Project Save Our Surf Beach Clean Ups M06 12:10PM

After Being Told He's 'Full of Sh*t' at School Event, Mnuchin Demands UCLA Suppress Video M02 11:44AM

Resolution of the Rent Strike in Boyle Heights M01 6:28PM

What Big Brother Knows About You and What You Can Do About It M01 3:30PM

Step Up As LAPD Chief Charlie Beck Steps Down F14 2:44PM

Our House Grief Support Center Hosts 9th Annual Run For Hope, April 29 F13 12:51PM

Don’t let this LA County Probation Department overhaul proposal sit on the shelf F13 11:04AM

Echo Park Residents Sue LA Over Controversial Development F12 8:51AM

Former Signal Hill police officer pleads guilty in road-rage incident in Irvine F09 10:25PM

Calif. Police Accused of 'Collusion' With Neo-Nazis After Release of Court Documents F09 7:14PM

Center for the Study of Political Graphics exhibit on Police Abuse posters F07 9:50AM

City Agrees to Settle Lawsuit Claiming Pasadena Police Officer Had His Sister Falsely Arre F04 3:17PM

Professor's Study Highlights Health Risks of Urban Oil Drilling F04 12:42PM

Claims paid involving Pasadena Police Department 2014 to present F04 10:52AM

Pasadenans - get your license plate reader records from police F03 11:11PM

LA Times Homicide Report F03 1:57PM

More Local News...

Other/Breaking News

The Shortwave Report 04/27/18 Listen Globally! A26 4:03PM

Federal Bank Examiner FDIC recalls year long 1999 robbery in 2017 A26 3:24PM

Doxa du lobby A25 2:03AM

Tech workers organize A24 6:24PM

Architect Stephen Francis Jones A24 3:01PM

UN Forum Wrestles with Economic Policies 10 Years After Financial Crisis Islands Call for A24 12:34PM

Xyloglossie attitudinale A23 8:07AM

What does the Quran Say About Islamic Dress?? A21 4:15PM

Biodiversité ou la nature privatisée A20 11:22AM

The Market is a Universal Totalitarian Religion A20 7:14AM

Book Available about Hispanics and US Civil War by National Park Service A19 5:52PM

The Shortwave Report 04/20/18 Listen Globally! A19 4:01PM

The Republican 'Prolife' Party Is the Party of War, Execution, and Bear Cub Murder A19 11:48AM

Neurogenèse involutive A18 9:21AM

Paraphysique de la dictature étatique A16 10:13AM

Book Review: "The New Bonapartists" A16 3:45AM

The West Must Take the First Steps to Russia A14 12:25PM

Théorie générale de la révolution ou hommage à feu Mikhaïl Bakounine A14 3:30AM

The Shortwave Report 04/13/18 Listen Globally! A12 3:50PM

“Lost in a Dream” Singing Competition Winner to Be Chosen on April 15 for ,000 Prize! A12 3:48PM

The World Dependent on Central Banks A12 4:43AM

Ohio Governor Race: Dennis Kucinich & Richard Cordray Run Against Mike DeWine A11 9:40PM

March 2018 Honduras Coup Again Update A10 10:52PM

Apologie du zadisme insurrectionnel A10 3:33PM

ICE contract with license plate reader company A10 1:14PM

Palimpseste sisyphéen A09 11:23PM

Black Portraiture(S) IV: The Color of Silence...Cuba No...Cambridge Yes A09 5:32AM

Prohibiting Micro-Second Betting on the Exchanges A09 4:18AM

More Breaking News...
© 2000-2018 Los Angeles Independent Media Center. Unless otherwise stated by the author, all content is free for non-commercial reuse, reprint, and rebroadcast, on the net and elsewhere. Opinions are those of the contributors and are not necessarily endorsed by the Los Angeles Independent Media Center. Running sf-active v0.9.4 Disclaimer | Privacy