We had a server outage, and we're rebuilding the site. Some of the site features won't work. Thank you for your patience.
imc indymedia

Los Angeles Indymedia : Activist News

white themeblack themered themetheme help
About Us Contact Us Calendar Publish RSS
latest news
best of news




A-Infos Radio

Indymedia On Air

Dope-X-Resistance-LA List


IMC Network:

Original Cities

www.indymedia.org africa: ambazonia canarias estrecho / madiaq kenya nigeria south africa canada: hamilton london, ontario maritimes montreal ontario ottawa quebec thunder bay vancouver victoria windsor winnipeg east asia: burma jakarta japan korea manila qc europe: abruzzo alacant andorra antwerpen armenia athens austria barcelona belarus belgium belgrade bristol brussels bulgaria calabria croatia cyprus emilia-romagna estrecho / madiaq euskal herria galiza germany grenoble hungary ireland istanbul italy la plana liege liguria lille linksunten lombardia london madrid malta marseille nantes napoli netherlands nice northern england norway oost-vlaanderen paris/Île-de-france patras piemonte poland portugal roma romania russia saint-petersburg scotland sverige switzerland thessaloniki torun toscana toulouse ukraine united kingdom valencia latin america: argentina bolivia chiapas chile chile sur cmi brasil colombia ecuador mexico peru puerto rico qollasuyu rosario santiago tijuana uruguay valparaiso venezuela venezuela oceania: adelaide aotearoa brisbane burma darwin jakarta manila melbourne perth qc sydney south asia: india mumbai united states: arizona arkansas asheville atlanta austin baltimore big muddy binghamton boston buffalo charlottesville chicago cleveland colorado columbus dc hawaii houston hudson mohawk kansas city la madison maine miami michigan milwaukee minneapolis/st. paul new hampshire new jersey new mexico new orleans north carolina north texas nyc oklahoma philadelphia pittsburgh portland richmond rochester rogue valley saint louis san diego san francisco san francisco bay area santa barbara santa cruz, ca sarasota seattle tampa bay tennessee urbana-champaign vermont western mass worcester west asia: armenia beirut israel palestine process: fbi/legal updates mailing lists process & imc docs tech volunteer projects: print radio satellite tv video regions: oceania united states topics: biotech

Surviving Cities

www.indymedia.org africa: canada: quebec east asia: japan europe: athens barcelona belgium bristol brussels cyprus germany grenoble ireland istanbul lille linksunten nantes netherlands norway portugal united kingdom latin america: argentina cmi brasil rosario oceania: aotearoa united states: austin big muddy binghamton boston chicago columbus la michigan nyc portland rochester saint louis san diego san francisco bay area santa cruz, ca tennessee urbana-champaign worcester west asia: palestine process: fbi/legal updates process & imc docs projects: radio satellite tv
printable version - js reader version - view hidden posts - tags and related articles


by XXX Saturday, May. 17, 2003 at 6:33 PM

Professor A. K. Dewdney carries out a series of experiments regarding the possibility of making cell-phone calls from planes at various altitudes. He concludes that the cell-phone calls from the "hijacked" 9-11 planes were impossible.

'Project Achilles' Report

Part One - January 23rd 2003

Preliminary low-altitude cellphone experiment

January 23 2003; 4:35 - 5:40 pm
Civic Airport, London, Ontario, Canada


aircraft: Diamond DA20/C1 Katana two-seater
engine: 125 hp
fiberglass/carbon fiber composite body & airframe
weight fully loaded: 1630 lbs

cellphones: one Motorola model "120 CDMA" cellphone (A)
two Motorola "i1000 plus" cellphones (B)
(both fully charged at flight time)

The flight plan consisted of four "laps," elongated circuits (shaped like a paperclip) over London, Ontario airspace. Each lap was about seven to eight miles long and two to three miles wide. Three calls were made on each of two straight legs in each lap. Calls alternated between cellphone A and cellphone B. A second i1000, intended for use at higher altitudes, slipped to the cockpit floor and could not be retrieved in those cramped quarters. A check of battery levels of the first i1000, however, showed that there had been no significant power drain on the unit.

* * * A * * * * * B * * * * A * * * * end
* W ----- E
* * * B * * * * * A * * * * B * * * * begin

Note: "altitude" means aboveground altitude, not height above sea level, as recorded by the altimeter.


Lap 1 @ 1,100 feet altitude
1st leg: A to business number no connection?
  B to business number 1 min. complete
  A to business number 1 min. complete
2nd leg B to home number no connection?
  A to home number (broken) complete
  B to home number complete
Lap 2 @ 2,100 feet altitude
1st leg: A to home number no connection?
  B to home number no voice, just a "beep"
  A to home number no connection?
2nd leg B to home number 1 min. complete
  A to home number no voice
  B to home number no voice
Lap 3 @ 3,100 feet altitude
1st leg: A to home number missed making the call
  B to home number "system busy"
  A to home number incomplete
2nd leg B to home number "please wait: CLEARNET"
  A to home number incomplete
  B to home number call made late, incomplete  
Lap 3 @ 3,500 feet altitude
A to home number incomplete  
B to home number   complete, but breaking up    

After the third call, I decided that the cockpit was too noisy to hear the message system, so I changed my plan and called home (my wife), instead.

Calls to the business number were recorded by the message system. Two calls made it through. Of the 17 calls to the home number, only about ten calls got through. In three of these, we had a conversation (of sorts) and the rest were just white noise. (no record of which)


In the preliminary test, only five of the 16 (attempted) calls resulted in any meaningful voice contact. In at least two of those calls, no connection whatever could be established with cellsites below. The composition of the Diamond Katana (manufactured right here in London, Ontario) makes it almost transparent to EM radiation at radio wavelengths and the results of this experiment are therefore optimal. Aircraft with metal skins will undoubtedly fare rather worse in the percentage of calls making it through.

 Altitude Range   Range in Feet   Call Success Rate   Percentage Success Rate 
low altitude 1100' - 2100' 4/12 33%
mid altitude 3100' - 3500' 1/7 14%


The purpose of this experiment was to probe the effect of altitude on cellphone service and to iron out wrinkles in experimental procedure. In the first instance, it looks as though there might well be a decline in service with increasing altitude. The phenomenon must now be mapped more carefully.

As far as operating procedures is concerned, it is probably best to make calls to a number you know well, to be familiar with the various status messages on each cellphone display screen, and to have someone at the other end who can log the time of the call, as well as to summarize the content. (The cockpit in most light aircraft is so noisy that one cannot always hear a voice at the other end, although I did hear my wife talking somewhat clearly on two occasions.) Also, it is important to be very organized, having a special carrier case for cellphones, writing/recording materials, etc. The airspeed of the Katana was just a little fast for me to comfortably make the calls and stay organized at the same time. Two of the calls were made rather late in the current lap, even as we began to climb out to the next one. It would be better to have a separate person operating the cellphones. We also need a meaningful call classification system to fill the gaps between complete failure and an audible conversation.

All calls were handled by the Bell Mobility Network, which has some 25 cellsites operating in the London area. I have now located all the cellsites in London, Ontario, thanks to a very helpful set of maps provided by a local cell phone aficionado: <www.arcx.com/sites/>

Plans are now under way for Part Two. This will involve a Cessna four-seater (with an aluminum skin), five or six cellphones of various types, an expert to operate them on my queue, and a flight plan that will explore the effect up to 10,000 feet beyond which, according to one airline pilot, there is absolutely no hope of getting through.

A. K. Dewdney
(with thanks to Corey Barrington, pilot with empire Aviation)

'Project Achilles' Report

Part Two - February 25th 2003


  • Diamond Katana four-seater (Empire Aviation)
  • cellphones: C1, C2, C3, C4 (See appendix for descriptions.)


  • Corey Barrington (pilot)
  • Darren Spicknell (operator - technician for Wireless Concepts, Inc)
  • Kee Dewdney (director)
  • Pat Dewdney (ground recorder)

Weather: unlimited ceiling, light scattered cloud at 3,000 and 25,000 feet, visibility 15 miles, wind 5 knots from NW, air temperature -12 C.

For this experiment, we flew a circular route, instead of the elongated oval. The circle centred on the downtown core and took us over most of the city suburbs. All locations below are referred to the city centre and are always about three miles distant from it.


At times specified by the director, the operator made a call to a specified number, stating the code number of the cellphone (1 to 4) and the altitude. The receiver recorded whatever was heard and the time the call was received. At the first three altitudes of 2000, 4000, and 6000 feet abga each cellphone was used once. At 8000 feet abga, only C2 and C3 were tried, C1 and C4 now being hors de combat.

Results with timeline:

Time (pm) Call No. C# Loc. Operator Recorder
5:05       started taxi to runway
5:12       takeoff
5:14       at 2000 feet (above-ground altitude)
5:15 Call #1 C1 N success not very clear
5:17 Call #2 C2 W success not very clear
5:19 Call #3 C3 SW failure
5:21 Call #4 C4 S success not clear/ breaking up
5:24       climbed to 4000 feet abga
5:25 Call #5 C1 NE failure
5:26 Call #6 C2 N success clear
5:27 Call #7 C3 NW failure
5:29 Call #8 C4 W failure
5:33       climbed to 6000 feet abga
5:34 Call #9 C1 SE failure
5:36 Call #10 C2 E failure
5:37 Call #11 C3 NE failure
5:38 Call #12 C4 N failure
5:39 Call #13 C1 NW failure
5:40 Call #14 C2 SW success clear
5:42 Call #15 C3 S failure
5:43 Call #16 C4 SE failure
5:44 Call #17 C1 E failure
5:45 Call #18 C2 NE failure
5:45 Call #19 C3 NE success breaking up
5:46 Call #20 C4 N failure
5:49       begin climb to 8000 feet abga (cellphones 2 and 3 only)
5:50 Call #21 C2 W failure
5:50 Call #22 C3 SW failure
5:51 Call #23 C2 S success buzzy
5:53       completed climb to 8000 feet abga
5:58 Call #24 C3 SE failure
5:58 Call #25 C2 E failure
5:58 Call #26 C3 E failure
5:59 Call #27 C2 NE failure
6:00 Call #28 C3 N failure
6:01 Call #29 C1 N failure
6:01 Call #30 C2 NW failure
6:02 Call #31 C3 NW failure
6:02 Call #32   C4 NW  
6:15       landed at airport


To the extent that the cellphones used in this experiment represent types in general use, it may be concluded that from this particular type of aircraft, cellphones become useless very quickly with increasing altitude. In particular, two of the cellphone types, the Mike and the Nokia, became useless above 2000 feet. Of the remaining two, the Audiovox worked intermittently up to 6000 feet but failed thereafter, while the BM analog cellphone worked once just over 7000 feet but failed consistently thereafter. We therefore conclude that ordinary cellphones, digital or analog, will fail to get through at or above 8000 feet abga.

It should be noted that several of the calls rated here as "successes" were difficult for the Recorder to hear, witness description such as "breaking up" or "buzzy."

Summary table

Altitude (in feet) Calls Tried Calls Successful Percent Success
2000 4 3 75%
4000 4 1 25%
6000 12 2 17%
8000 12* 1 8%

* includes three calls made while climbing; last successful call was made from just over 7000 feet.

The four cellphones operated via four different cellular networks (cellsites). Because calls were made from a variety of positions for each network, it cannot be said that failures were the fault of cellsite placement. the London, Ontario, region is richly supplied with cellsites belonging to five separate networks.

It may be noted in passing that this experiment was also conducted in a radio-transparent aircraft with carbon-fibre composite construction. Failure to make a call from such an aircraft with any particular brand of cellphone spells automatic failure for the same cellphone from a metal-clad aircraft flying at the same altitude. A metal skin attenuates all cellphone signals to a significant degree. It may safely be concluded that the operational ceiling for cellphones in aluminum skin aircraft (most passenger liners, for example) would be significantly lower than the ones reported here.

It may therefore safely be concluded that cellphone calls from passenger aircraft are physically impossible above 8000 feet abga and statistically unlikely below it.

A. K. Dewdney
February 25/03

Appendix - Cellphone types, networks (courtesy of Darren Spicknell)

C1 Motorola i95cl - Telus Mike Network - 800 Mhz IDEN
C2 Motorola StarTac - Bell Mobility - 800 Mhz Analog
C3 Audiovox 8300 - Telus PCS Network - 1.9 Ghz CDMA / 800 MHz
C4 Nokia 6310i - Rogers AT&T - 1.9 Ghz GHz GSM. (Tri-Band - Has an
1.8 GHz and 900 Mhz GSM these are European frequencies)

IDEN - Integrated Digital Enhanced Network
CDMA - Code Division Multiple Access
GSM - Global Systems for Mobile Communications

Power Levels

Power output of these handsets. The Nokia 6310i and Audiovox 8300 when in digital mode will output 0.2 Watts.

When the Analog Motorola StarTac is operating it is at 0.6 Watts optimal.

When and IF the Audiovox 8300 is in analog mode it will operate at 0.6 Watts (However, this is not normally the case - you will see wattage levels around 0.52 - 0.45 approximately)


Both the Telus Mike (C1) and Motorola StarTac (C2) operate in the 800 MHz range. This will allow the signal to travel at a great distance. However, the IDEN (Mike) network has fewer site locations and is a newer Digital network. Most digital technologies operate on a "all or none" basis. When it has signal it will work well. As the signal fades, one hears no static, but some digital distortion just before the call drops.


Mike Network: Newer, all-digital network with modern antenna design, and fewer cellsites

Bell Mobility Analog: Older, analog network with less focused antenna design but many cellsites

Telus PCS: Newer, digital network with multiple frequencies, modern antenna design, and many cellsites

Rogers GSM: Our newest digital network with modern antenna design and many cellsites

A. K. Dewdney,
February 25th 2003

From Here. Also see: Ghost Riders in the Sky.

Report this post as:
Share on: Twitter, Facebook, Google+

add your comments

Listed below are the 10 latest comments of 11 posted about this article.
These comments are anonymously submitted by the website visitors.
XXX cell phone calls faked Saturday, May. 17, 2003 at 6:35 PM
cellphones call faked brian Saturday, May. 17, 2003 at 6:42 PM
The data is what the data is... Diogenes Saturday, May. 17, 2003 at 6:42 PM
and yet fresca Saturday, May. 17, 2003 at 9:13 PM
My name is fresca, i am a dumb bitch zofo Saturday, May. 17, 2003 at 9:19 PM
C'mon dummy fresca Saturday, May. 17, 2003 at 9:30 PM
LOL Stinkbastard Saturday, May. 17, 2003 at 9:34 PM
Perhaps fresca Sunday, May. 18, 2003 at 10:30 AM
girl... Stinkbastard Sunday, May. 18, 2003 at 12:20 PM
yeah slick Sunday, May. 18, 2003 at 12:30 PM
oh slick Sheepdog Sunday, May. 18, 2003 at 10:54 PM
© 2000-2018 Los Angeles Independent Media Center. Unless otherwise stated by the author, all content is free for non-commercial reuse, reprint, and rebroadcast, on the net and elsewhere. Opinions are those of the contributors and are not necessarily endorsed by the Los Angeles Independent Media Center. Running sf-active v0.9.4 Disclaimer | Privacy